Lecture 1

Introduction to Circuits and Systems

Prof Peter YK Cheung Imperial College London

URL: www.ee.ic.ac.uk/pcheung/teaching/EE2_CAS/E-mail: p.cheung@imperial.ac.uk

Course Aims & Objective

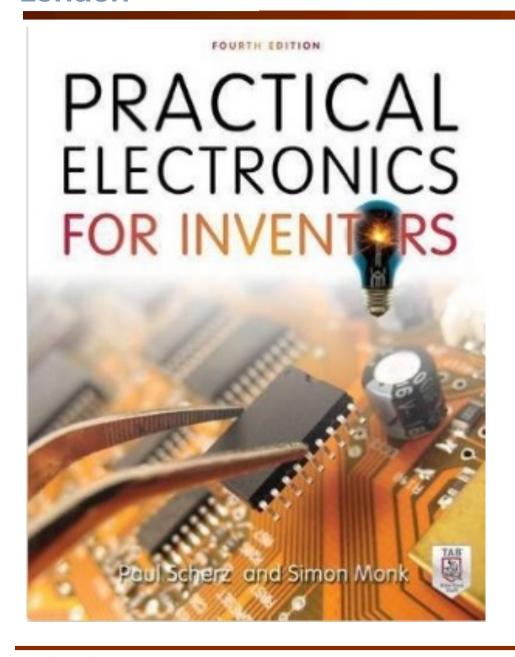
- Designing Analogue Circuits
 - Real-life operational amplifier, single rail supply
 - Limitation of real op-amps
 - Applications of op-amps
- Designing Digital Circuits
 - Field Programmable Gate Arrays
 - Design methods & constraints
 - Verilog Hardware Description Language
- Systems view of electronic circuits
 - Parititioning between analogue & digital parts in a system
 - Interface between analogue & digital parts

Organization and Schedule

- Course structure
 - 2-hours lecture session on Tuesday @ 14.00 16.00
 - 1-hour "Problem Class" on Thursday @ 15.00 16.00
 - Two 2-hour laboratory session on Monday & Tuesday @ 09.00 10.00
- ❖ 16 lectures will be supported by:
 - 6 lab experiments and "open-ended" challenges which will be assessed through two individual Lab Oral sessions
 - 6 problem sheets to help apply what you have learned to answer questions
- Assessment:
 - 2-hour written paper in Summer Term (60%)
 - Mid-term Lab Oral (15%)
 - End of Term Lab Oral (25%)
- Please consult the "EE2 Circuits and Systems Module Description and Planning" document

Related Courses

Follow on from these Year 1 modules:

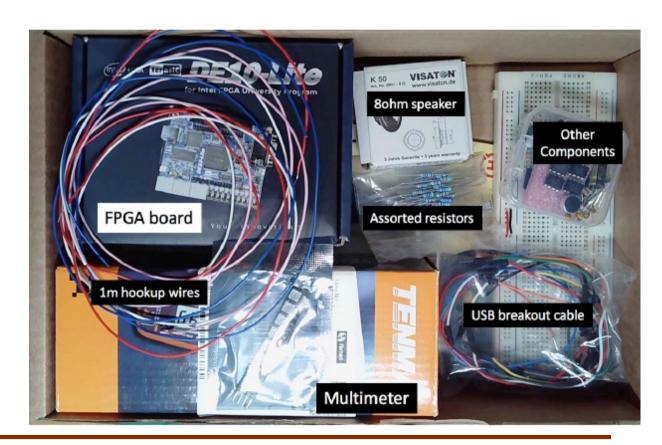

- ELEC40002 Analysis and Design of Circuits
- ELEC40003 Digital Electronics & Computer Architecture
- ELEC40004 Programming for Engineers
- ELEC40006 Electronics design project 1

Relevant to these Year 3 and 4 modules

- EE3.01 Analogue Integrated Circuits and Systems
- EE3.02 Instrumentation
- EE3.05 Digital System Design
- EE3.21 Biomedical Electronics
- EE3.24 Embedded Systems
- EE4.16 Analogue Signal Processing
- EE4.17 High Performance Analogue Electronics
- EE4.20 Full-Custom Integrated Circuit Design
- EE4.71 Hardware and Software Verification

Imperial College London

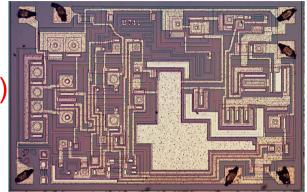
Buy this book!



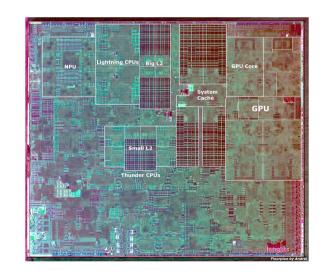
- Recommended book:
 Practical Electronics for Inventors,
 Paul Scherz & Simon Mon
- Useful for analogue part in particular
- Very useful reference for the future when you want to build electronic circuits
- Over 1000 pages for under £30 a bargain!

Lab-in-a-Box

- Equipment on loan to you to support this module:
 - Oscilloscope (USB based) and multimeter
 - DE10-Lite FPGA board with prototype shield
 - Prototyping breadboard
 - Other electronics components to support the Lab Experiments
- Sustainability return the measurement equipment and the FPGA board when finished; reuse other components where possible to minimize waste.
- Your final Lab Oral marks will not be issued until you have returned the Lab-in-a-Box to the techinicians in the Level 1 Lab.

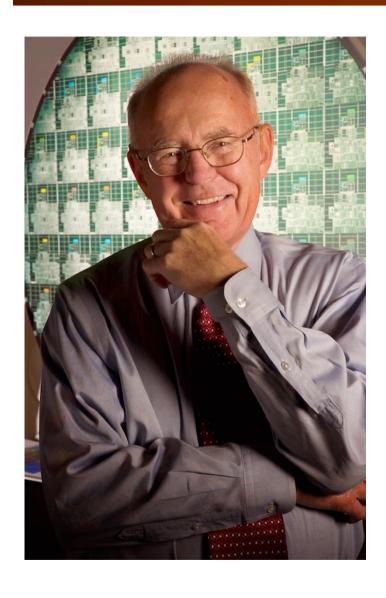

History of Microelectronics

The **Transistor** (term came from "**Transfer Resistor**")


- > 1925 **FET** concept patented (Lilienfeld, Canada)
- 1942 Effect observed first in duodiodes for radar
- 1947 First Ge BJT: Bardeen/Brattain/Shockley (Bell)
- > 1954 First **Silicon BJT**: Teal (TI)
- > 1960 First **MOS Transistor**: Kahng/Atalla (Bell)

The Integrated Circuit (IC)

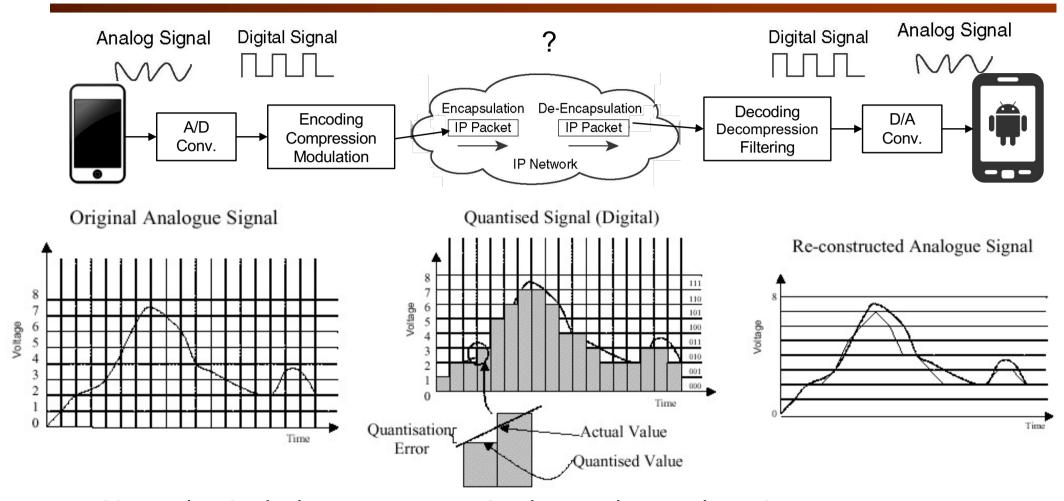
- > 1952 IC concept published by Dummer (UK MoD)
- 1958 First IC: Dilby (TI) and Noyce (Fairchild/Intel)
- > 1960 **MSI** (100s of devices integrated per chip)
- 1968 20 transistors: **741 opamp**
- ▶ 1970 LSI (1000s of devices integrated per chip)
- > 1989 1m+ transistors on single chip: Intel 80486
- > 2008 1.7b+ transistors on single chip: Intel Itanium
- > 2019 8.5b+ transistors on single chip: **Apple A13**



741 opamp, 1968


Apple A13, 2019

Moore's Law



- Gordon Moore, co-founder of Intel, observed in 1965 that number of transistors per square inch in ICs doubled every year.
 - In subsequent years, the pace slowed down a bit, but density has doubled approximately every 18 months, and this is the current definition of Moore's Law.
 - This trend has been driving the microelectronics industry – technology target
 - Most experts, including Moore himself, expect Moore's Law to hold for at least another decade.
- ❖ In 2020, Apple's M1 chip has more transistors (16 billion transistors using 5nm technology) than people alive today (around 7.8 billion)!

What does electronic system look like?

Analogue vs Digital

- Most physical phenomena are in the analogue domain.
- Most modern electronics systems operate in the digital domain.
- Analogue-to-Digital (A/D) converters, and Digital-to-Analogue (D/A) converters links the two worlds together.

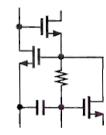
Common Misconceptions (A vs. D)

- "Analogue electronics is no longer needed its all done in digital nowadays"
 - All electronics are fundamentally ANALOGUE! Therefore analogue will ALWAYS be needed
- "Digital is better quality than analogue"
 - No, digital is just more tolerant to interference than analogue
- "Digital is lower power than analogue"
 - No, in fact in the most demanding applications analogue is always the more energy efficient
- "There is no future for an Analogue Design Engineer"
 - There is generally a great shortage of analogue design engineers therefore there are excellent employment opportunities
 - True there are more jobs in digital than analogue, as there are more job in software than hardware
 - All digital circuits, at some frequency, are really analogue

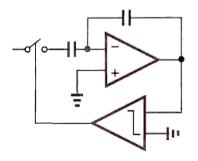
Why is analogue design challenging?

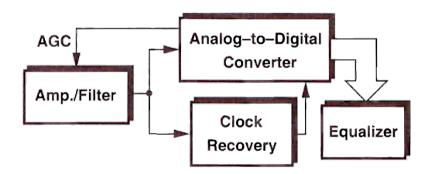
- Analogue circuits deal with multi-dimensional tradeoff of speed, power, gain, precision, supply, ...
- Analogue circuits are much more sensitive to:
 - Noise, crosstalk, and other interferers, second-order device effects
- High performance analog circuit design can rarely be automated
 - Typically require hand-crafted design and layout
 - Modeling and simulation requires experience and intuition
- Economic forces require the development of analogue circuits in mainstream digital processes (i.e. CMOS technology)
 - Integration of analogue and digital functions onto a single substrate
- Many levels of abstraction are required

Why is digital design challenging?


- Digital circuits deal primarily with complexity and speed/power trade-off
- Complexity leads to many problems:
 - Difficult to specify
 - Impossible to breadboard and prototype
 - Hard to verify design
 - Hard to test chip once manufactured
 - Timing closure how to ensure circuit runs reliably at required clock frequency
 - Partitioning how to successfully combine many designer's effort to make a chip
 - Similar issues as in analogue such as cross-talk, clock distribution and signal integrity

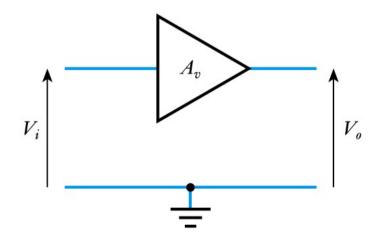
Level of Abstraction


Device-level


Circuit-level

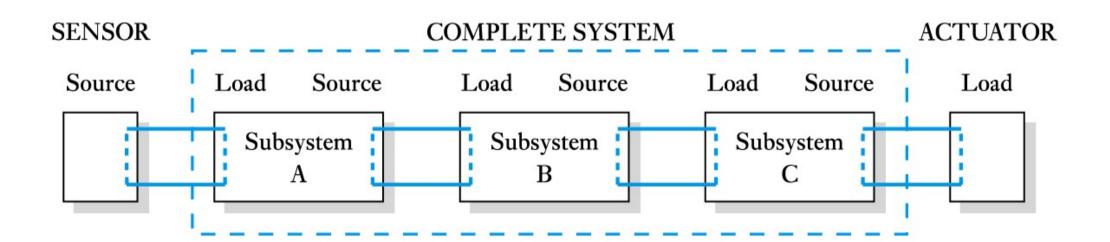
Architecture-level

System-level


Electronic Amplifiers

- Revisit electronic amplifiers (covered last year in Holmes/Mitcheson module on analysis of circuits, L9)
 - take power from a power supply
 - amplification described by gain

Voltage Gain
$$(A_v) = \frac{V_o}{V_i}$$
 or $20 \log_{10} \frac{V_o}{V_i} dB$


Current Gain
$$(A_i) = \frac{I_o}{I_i}$$
 or $20 \log_{10} \frac{I_o}{I_i}$ dB

Power Gain
$$(A_p) = \frac{P_o}{P_i}$$
 or $10 \log_{10} \frac{P_o}{P_i}$ dB

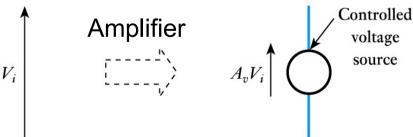
Sources and Loads

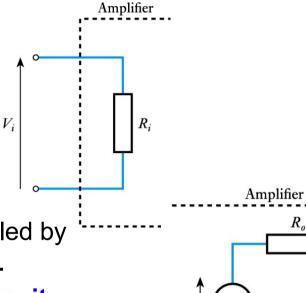
- An ideal voltage amplifier would produce an output determined only by the input voltage and its gain.
 - irrespective of the nature of the source and the load
 - in real amplifiers this is not the case
 - the output voltage is affected by loading

Modelling Sources and Loads

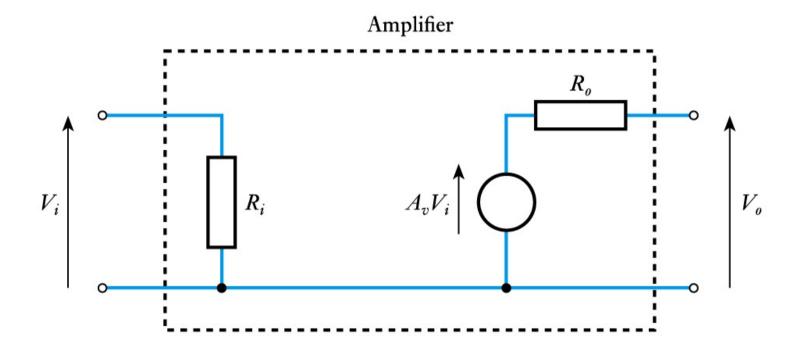
Modelling the input of an amplifier

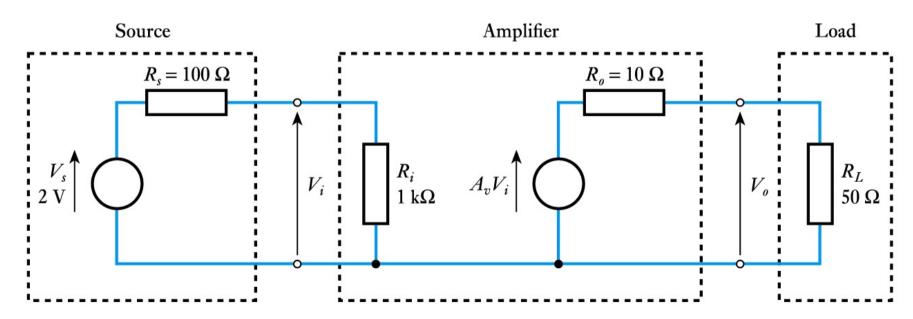
- the input can often be adequately modelled by a simple resistor
- the input resistance



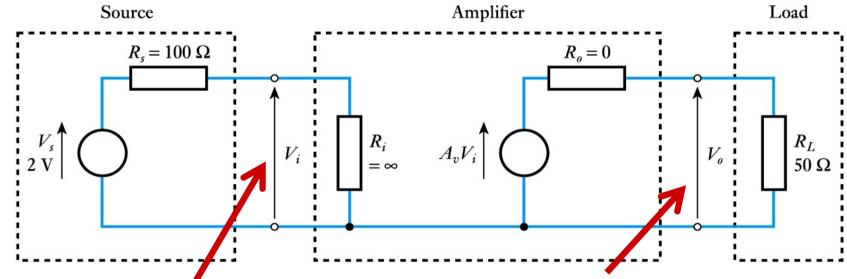

 Similarly, the output of an amplifier can be modelled by an ideal voltage source and an output resistance.

This is an example of a Thévenin equivalent circuit


- can be modelled by a controlled voltage source
- the voltage produced by the source is determined by the input voltage to the circuit


Equivalent circuit of an amplifier

 We can put together the models for input, output and gain, to form a model of the entire amplifier as shown here


An example (1)

- An amplifier has a voltage gain of 10, an input resistance of 1 k Ω and an output resistance of 10 Ω .
- * The amplifier is connected to a sensor that produces a voltage of 2 V and has an output resistance of 100 Ω , and to a load of 50 Ω .
- What will be the output voltage of the amplifier (that is, the voltage across the load resistance)?
- We start by constructing an equivalent circuit of the amplifier, the source and the load:

An ideal voltage amplifier

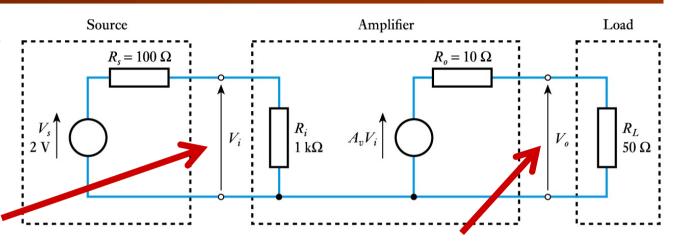
- An ideal voltage amplifier would not suffer from loading
 - it would have $R_i = \infty$ and $R_o = 0$

• If $R_i = \infty$, then

$$\frac{R_i}{R_s + R_i} \approx \frac{R_i}{R_i} = 1$$

and,

$$V_i = \frac{R_i}{R_s + R_i} V_s \approx V_s = 2 \text{ V}$$


$$V_o = A_v V_i \frac{R_L}{R_o + R_L}$$
$$= 10 V_i \frac{50 \Omega}{0 \Omega + 50 \Omega}$$
$$= 10 \times 2 \frac{50 \Omega}{50 \Omega} = 20 \text{ V}$$

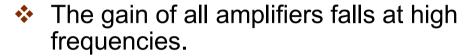
An example (2)

From this we calculate the output voltage:

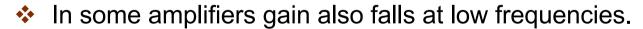
$$V_{i} = \frac{R_{i}}{R_{s} + R_{i}} V_{s}$$

$$= \frac{1 \text{ k}\Omega}{100 \Omega + 1 \text{ k}\Omega} \times 2 \text{ V} = 1.82 \text{ V}$$

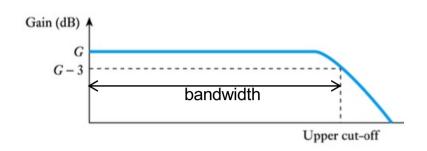
Although the amplifier has a gain of 10 when it is NOT connected to anything, when used in the system, the actual gain is:

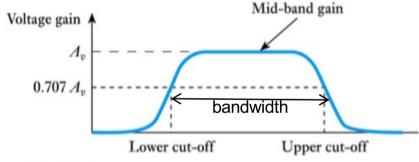

Voltage Gain
$$(A_V) = \frac{V_O}{V_i} = \frac{15.2}{1.82} = 8.35$$

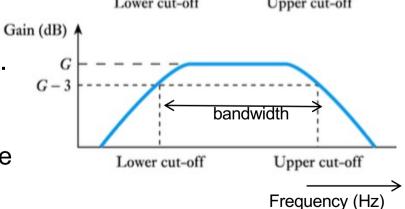
$$\begin{aligned} V_o &= A_v V_i \frac{R_L}{R_o + R_L} \\ &= 10 \, V_i \frac{50 \, \Omega}{10 \, \Omega + 50 \, \Omega} \\ &= 10 \times 1.82 \, \frac{50 \, \Omega}{10 \, \Omega + 50 \, \Omega} = 15.2 \, \text{V} \end{aligned}$$


- The reduction of the voltage gain is due to loading effects.
- The original gain of the amplifier in isolation was 10. It is the unloaded gain.

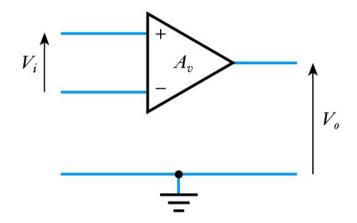
Frequency response and bandwidth of Amplifier

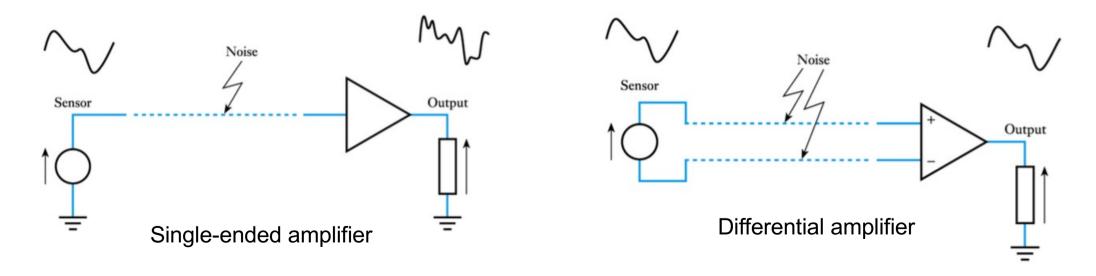

- All real amplifiers have limits to the range of frequencies over which they can be used.
- The gain of a circuit in its normal operating range is termed its mid-band gain.




- Characteristic defined by the half-power point.
- Gain falls to $1/\sqrt{2} = 0.707$ (-3dB) times the mid-band gain.
- This occurs at the cut-off (or corner) frequency.

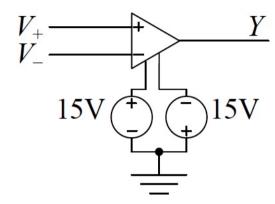
- These are AC coupled amplifiers
- The bandwidth of the amplifier is the frequency range up to the -3dB point (or cut-off frequencies)



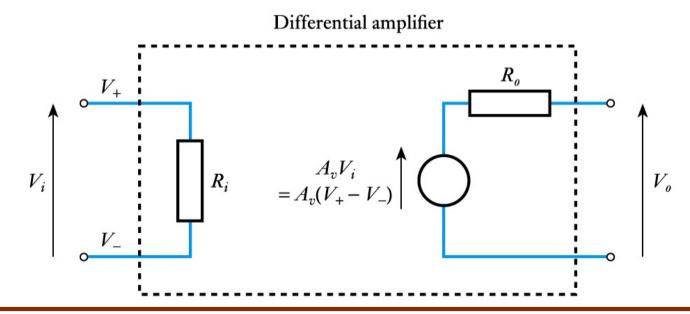


Differential amplifiers

- Differential amplifiers have two inputs and amplify the voltage difference between them.
 - non-inverting input (labelled +) and inverting input (labelled -)



An example of the use of a differential amplifier:



Equivalent circuit of a differential amplifier

❖ Operational Amplifier is a type of differential amplifier (from last year L9S4):

The equivalent circuit of such a differential amplifier is:

Real-life Op Amp

MICROCHIP MCP6001/1R/1U/2/4

1 MHz, Low-Power Op Amp

Description

The Microchip Technology Inc. MCP6001/2/4 family of operational amplifiers (op amps) is specifically designed for general-purpose applications. This family has a 1 MHz Gain Bandwidth Product (GBWP) and 90° phase margin (typical). It also maintains 45° phase margin (typical) with a 500 pF capacitive load. This family operates from a single supply voltage as low as 1.8V, while drawing 100 μ A (typical) quiescent current. Additionally, the MCP6001/2/4 supports rail-to-rail input and output swing, with a common mode input voltage range of V_{DD} + 300 mV to V_{SS} – 300 mV. This family of op amps is designed with Microchip's advanced CMOS process.

- Limited to 1MHz signal frequency (GBP) (not infinite gain at all frequencies)
- Stable under high capacitance load (linked to phase margin)
- Single power supply operation
- Rail-to-rail input/output swing
- Low supply current when idle
- Near rail-to-rail common mode input voltage